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Abstract
Itinerant ferromagnetism derived from eg and t2g states has been studied by the Gutzwiller
variational method based on the two-band Hubbard model. The analysis shows that the
magnetization value that depends on the orbital reflects strength of renormalization for each
band. As a result, the magnetization of the 3d(t2g) band, which is more strongly renormalized in
the calculation, has a larger value than that of the 3d(eg) band. By changing the atomic
interaction and projected orbital density of states (DOS), we have discussed general tendencies
that the magnetizations by the eg and t2g states are determined by the relative intensities of the
projected orbital DOS at the Fermi energy, the renormalized kinetic energies relative to U , and
stability of atomic multielectron configuration states. The result indicates that increases in
Coulomb interaction U and the portion of Hund’s coupling J in the atomic interaction lead to
balanced magnetizations between the two states. Variation in the above factors can generate a
variety of spin-dependent electronic structures near the Fermi energy in 3d transition metal
ferromagnets.

1. Introduction

The correlation effect on itinerant ferromagnetism of
3d transition metals has been extensively studied so
far. Theories beyond the Stoner approximation [1] have
shown a qualitatively consistent correlation effect [2–4]
that stabilization of the ferromagnetic state requires larger
interaction than the expectation based on single-particle theory.
In addition to the correlation for a single band, the importance
of band degeneration has been suggested for understanding of
the itinerant ferromagnetism. In [5], the Gutzwiller method
has been generalized to the multi-band Hubbard model with
general on-site Coulomb interactions. As a specific application
of this scheme, characteristics of itinerant ferromagnetism by
two degenerate eg orbitals, which have identical projected
orbital DOS, were investigated [5]. There, effects of the
band degeneration on the magnetic properties such as the
magnetization as a function of the atomic interaction and
the role of Hund’s coupling in them were examined. On
electronic states, the correlation effect brings a narrowing
of bandwidth and exchange splitting. In particular, this
effect on 3d band structure has been studied in ferromagnetic
nickel, experimentally and theoretically [6–12]. As a result,
description of quasi-particle band structure has been markedly
improved by band theory considering the correlation effect

such as the GW approximation (GWA) combined with
dynamical mean-field theory (DMFT) [10] and the generalized
Hubbard model based on the Gutzwiller approximation [11].

Here, we address the issue relating to characteristics of
3d transition metal ferromagnets that both the 3d(eg) band
and 3d(t2g) band form the Fermi surface and contribute to
the magnetism. In the case of ferromagnetic nickel, it has
been observed as a difference between the magnetizations
derived from the eg and t2g states and has been thought to
relate to conflicting parts in the band structure near the Fermi
energy. For example, there has been discrepancy in the
existence of the hole pocket by the X2 minority spin band.
The hole pocket by the minority spin band of X2 (eg) and
its relation to the area of the Fermi surface by the minority
spin band of X5 (t2g) are determined by anisotropy of the
exchange splitting. Several experimental results have indicated
a large anisotropy (a factor of about two) in the exchange
splitting between the eg and t2g states and disappearance of
the X2 minority spin hole pocket [9, 11], contrary to band
structure calculations such as local density approximation
(LDA) calculations [6]. Experimental results indicating the
existence of the X2 minority spin hole pocket have also been
reported [12]. The magnetizations by the eg and t2g states,
which have different values, connect with the anisotropy of
the exchange splitting via the DOS. Interaction between the
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eg and t2g orbitals can relate to the difference between the
magnetizations by these states. On the basis of the above
situation, we investigate the correlation effect on eg and t2g

electrons by the multi-band model and the magnetizations
derived from the eg and t2g states. For this analysis, we
have applied the Gutzwiller variational method to the two-
band Hubbard model consisting of the eg and t2g states on a
face centred cubic (fcc) lattice. By applying the expression of
the generalized Gutzwiller method in [5] to the model system
consisting of the two states that have different projected orbital
DOSs, the explicit form of the renormalization factor and the
variational energy is obtained for this specific case. Using the
obtained expression, the magnetizations derived from the eg

and t2g states are analysed as functions of atomic interactions,
and the difference (or ratio) between the magnetizations of
the two states is studied. The simplification into the two
bands allows one to fully examine the magnetic behaviour of
these states by changing the atomic interaction and the DOS,
which vary among ferromagnetic 3d transition metals Fe, Co,
and Ni. The lattice parameter, dimensionality, and surface–
bulk feature would also affect them. Therefore, although the
calculation is performed with an ideal model, it may help us
to understand characteristics of spin-dependent band structures
and ferromagnetism of 3d transition metals.

2. Model and method

The Hamiltonian of the two-band Hubbard model Ĥ is written
in terms of the single-particle part Ĥ1 and the atomic part Ĥat:

Ĥ =
∑

i, j;σ ,σ ′
tσ ,σ ′
i, j ĉ†

i;σ ĉ j;σ ′ +
∑

i

Ĥi;at = Ĥ1 + Ĥat,

Ĥi;at = U
∑

b

n̂b,↑n̂b,↓ + U ′ ∑

σ,σ ′
n̂eg,σ n̂t2g,σ ′

− J
∑

σ

n̂eg,σ n̂t2g,σ + J
∑

σ

ĉ†
eg,σ

ĉ†
t2g,−σ ĉeg,−σ ĉt2g,σ

+ J (ĉ†
eg,↑ĉ†

eg,↓ĉt2g,↓ĉt2g,↑ + ĉ†
t2g,↑ĉ†

t2g,↓ĉeg,↓ĉeg,↑),

(1)

where ĉ†
i;σ in Ĥ1 creates an electron with combined spin–orbit

index σ at the lattice site i . In this study, we have used
two 3d orbitals, d(x2 − y2) (eg) and d(zx) (t2g). In Ĥat, the
specific form for the eg and t2g orbitals with spin σ is used,
U (U ′) denotes the intra- (inter-) orbital Coulomb interaction
and J is the Hund’s coupling. The orbitals d(x2 − y2) and
d(zx) are labelled as b = 1 and 2, respectively. Among the
interactions in Ĥat, the relation U − U ′ = 2J that comes from
the cubic symmetry holds. The general formulation for the
Gutzwiller method based on the multi-band Hubbard model
is given in [5]. In figure 1, notation for the probabilities of
the multielectron configuration states and the energies of the
atomic configurations obtained from Ĥat are shown for the
present case. The projected orbital DOS is obtained using
tight-binding Hamiltonian Ĥ1 with first- and second-nearest-
neighbour hopping matrix elements as described in [13]. The
model calculations by the Gutzwiller method are performed
using the DOS obtained from two hopping parameter sets,
which are set as examples of itinerant electron systems. The
hopping parameters for DOS1 are set at (tddσ )1 = 0.5 eV,

Figure 1. Configurations show the eigenstates of Ĥat, while S and
AS indicate that the symmetric and antisymmetric combinations of
the designated configurations are the eigenstates of Ĥat, respectively.
Notations for the probabilities and energies of the eigenstates are also
indicated.

(tddσ )2 = 0.04 eV, and tddσ :tddπ :tddδ = 1.0:(−0.6):0.1. Those
for DOS2 are (tddσ )1 = 0.5 eV, (tddσ )2 = 0.08 eV, and
tddσ :tddπ :tddδ = 1.0:(−0.6):0.1. Thus, DOS1 and DOS2
collectively indicate the DOS set, including the total DOS
(D0(ε)), and the DOS projected onto the eg orbital (Deg,0(ε))
and t2g orbital (Dt2g,0(ε)) by each hopping parameter set. In
figure 2, D0(ε) (=Deg,0(ε)+ Dt2g,0(ε)), Deg,0(ε) and Dt2g,0(ε),
which are the calculated results per site and per spin, are
shown for DOS1 and DOS2. As shown later, calculations by
the peak of DOS1 and DOS2 give ferromagnetic solutions by
typical potential parameters in correlated electron systems. In
figure 2, the difference between DOS1 and DOS2 is prominent
especially in the relative intensity of the DOS projected onto
the two orbitals at the Fermi energy. The calculations with
two kinds of DOS set are performed to examine the magnetic
behaviour with such a difference of DOS shape. In the case
treating the eg and t2g orbitals, the renormalization factor qb,σ

(<1) for orbital b and spin σ is described by the probabilities
and electron occupation n0

b,σ :

qb=ib,σ = 1

n0
b=ib ,σ (1 − n0

b=ib ,σ )

× [
(
√

sb=ib,−σ + √
tb=ib,σ ) 1

2 (
√

dE + √
dA)

+ (
√

sb= jb,−σ + √
tb= jb,σ ) 1

2 (

√
d0

t + √
ds) + √

e
√

sb=ib ,σ

2
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Figure 2. The DOSs projected onto the eg orbital (Deg,0(ε)) and t2g

orbital (Dt2g,0(ε)) are shown by broken and solid lines, respectively.
The total DOS D0(ε) is shown by a thick solid line. (a) and (b) show
the results for DOS1 and DOS2, respectively. The vertical broken
lines indicate EF,0, which is the Fermi energy initially set before the
calculation of the magnetization.

+ √
sb= jb,σ

√
dσσ

t +
√

d−σ−σ
t

√
tb= jb,−σ

+ √
tb=ib,−σ

√
f
]2

, (2)

where ib, jb = 1 or 2, and ib �= jb. The occupation n0
b,σ

to the DOS projected onto orbital b with spin σ is written
as n0

b,σ = ∫ EF,b,σ

−∞ dε Db,0(ε). Here, EF,b,σ indicates the
Fermi energy for orbital b with spin σ . Also notation for the
probabilities in figure 1 is used in the equation. The symbol
sb=ib,σ denotes the probability for a single occupancy of orbital
b = ib with spin σ . The probability for a triple occupancy of
orbital b = ib with spin σ and orbital b = jb with both spins is
indicated by tb=ib ,σ . The symbols d↑↑

t , d↓↓
t , d0

t , ds, dE, and dA

represent the probabilities to find doubly occupied states |↑,↑〉,
|↓,↓〉, (|↑,↓〉 + |↓,↑〉)/√2, (|↑,↓〉 − |↓,↑〉)/√2, (|↑↓, 0〉 −
|0,↑↓〉)/√2, and (|↑↓, 0〉 + |0,↑↓〉)/√2, respectively. The
probabilities for empty and fully occupied sites are indicated
by e and f . The variational energy Evar consists of the kinetic
energy part and atomic interaction part (equation (3)). The
kinetic energy part (renormalized kinetic energy) for orbital b
with spin σ is given by the product of the kinetic energy ε̄b,σ,0

of the electron in the uncorrelated state and the renormalization
factor qb,σ . Here, ε̄b,σ,0 is given by ε̄b,σ,0 = ∫ EF,b,σ

−∞ dε εDb,0(ε).
Then, the variational energy Evar for the present case is written
as

Evar =
∑

σ

qeg,σ ε̄eg,σ,0 +
∑

σ

qt2g,σ ε̄t2g,σ,0

+ (U ′ − J )(d↑↑
t + d0

t + d↓↓
t )

+ (U ′ + J )ds + (U ′ + J )dE

+ (U + J )dA + (U + 2U ′ − J )

× (teg,↑ + teg,↓ + tt2g,↑ + tt2g,↓)

+ (2U + 4U ′ − 2J ) f. (3)

The magnetizations by the eg and t2g states are determined
so as to minimize Evar. Here, the magnetization derived from

orbital b is M(b) = (n0
b,↑ − n0

b,↓)/2. The probabilities for a
singly occupied site and an empty site are described by

sb=ib,σ = n0
b=ib,σ

− [dσσ
t + 1

2 (d0
t + ds + dE + dA)

+ tb=ib ,σ + tb= jb,σ + tb= jb,−σ + f ], (4)

where ib �= jb, and

e = 1 − n0
eg,↑ − n0

eg,↓ − n0
t2g,↑ − n0

t2g,↓ + d↑↑
t + d0

t + d↓↓
t

+ ds + dE + dA + 2teg,↑ + 2teg,↓ + 2tt2g,↑ + 2tt2g,↓ + 3 f,

(5)

respectively. These give relations between probabilities
and electron occupations, and provide restriction in the
minimization problem.

3. Results and discussion

First, the calculation by the Gutzwiller method is performed
using the orbital-averaged DOS (D0(ε)/2). Thus, the two
orbitals are set to have identical average DOS, which formally
corresponds to the calculation by doubly degenerate orbitals.
The obtained magnetization is shown in figures 3(a) and (b), in
which U ′ and J are set at 0.6U and 0.2U , respectively. Since
the calculation is performed by initially setting the occupancy
that corresponds to the DOS peak at the Fermi energy EF,0

(n0 = 0.27 and 0.29 for DOS1 and DOS2, respectively), the
ferromagnetic state occurs from U ∼ 2.5 eV and 3.0 eV in
figures 3(a) and (b), respectively. Here, n0 and EF,0 denote
the occupation of D0(ε)/2 and Fermi energy that are initially
set before the minimization process of the variational energy,
respectively. Thus, n0 is given by n0 = (1/2)

∫ EF,0

−∞ dεD0(ε). If
the Gutzwiller method is performed by the DOS projected onto
the eg orbital (Deg,0(ε)) and t2g orbital (Dt2g,0(ε)), different
magnetization values are obtained for the two states, reflecting
the difference in the projected orbital DOS. The result is also
shown in figures 3(a) and (b), in which the magnetization of the
t2g states has larger value than that of the eg states. Since the
spin-averaged kinetic energy ε̄b,0 (=(ε̄b,↑,0 + ε̄b,↓,0)/2) of the
electron in the uncorrelated state has larger absolute value, with
the negative sign for the 3d(t2g) band with wider bandwidth,
the renormalization factor for the t2g states has smaller value
than that for the eg states in the minimum of Evar. For
example, by using DOS1, the spin-averaged renormalization
factor qb(=(qb,↑ + qb,↓)/2) is 0.806 and 0.710 for the 3d(eg)

and 3d(t2g) bands, respectively, with the atomic interaction
U = 4.0 eV (U ′ = 0.6U and J = 0.2U ). The qt2g

factor is actually smaller than the qeg factor. As a result,
the 3d(t2g) band is renormalized more strongly and causes
band narrowing, leading to larger magnetization of the t2g

states. The orbital-averaged magnetization deviates from the
middle of the magnetizations of the two states, which indicates
the importance of analysis using the multi-band model for
determination of the total magnetization.

Although the magnetizations of the eg and t2g states
are found to be strongly affected by the strength of
the renormalization that reflects the value of ε̄b,0 in the
minimization of Evar (equation (3)), the detailed magnetization
value should depend on the projected orbital DOS at EF,0,

3
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Figure 3. (a) and (b) magnetization by the orbital-averaged DOS is
plotted as a function of U by open circles. The results using DOS1
and DOS2 are shown in (a) and (b), respectively. Orbital-dependent
magnetizations of the eg and t2g states using their projected orbital
DOS are shown by down and up triangles, respectively. In the
calculation, U ′ and J are set at 0.6U and 0.2U , respectively.
(c) The magnetization of the t2g states relative to that of the eg states
(M(t2g)/M(eg)) is shown. The results by DOS1 and DOS2 are
indicated by the circle and square, respectively.

which can significantly influence the ratio between the
magnetizations of the two states. This is studied by comparing
the results from DOS1 and DOS2. As shown in figure 3(c),
the magnetization of the t2g states relative to that of the eg

states M(t2g)/M(eg) is always larger for the result by DOS1.
The relation between the results by DOS1 and DOS2 does
not depend on U . In this case, thus, the character of the
DOS at EF,0 can be considered to mainly determine the result
in figure 3(c). The relative intensities of the DOS projected
onto the eg and t2g orbitals (Deg,0(EF,0) and Dt2g,0(EF,0)) at
EF,0 explain the difference between the magnetization ratios
M(t2g)/M(eg) by DOS1 and DOS2. As shown in figure 2, the
intensity of the DOS projected onto the t2g orbital relative to
that onto the eg orbital (Dt2g,0(EF,0)/Deg,0(EF,0)) is larger for
DOS1 at EF,0. This leads to a larger value of M(t2g)/M(eg) in
the result using DOS1.

The magnetic behaviour of the eg and t2g states is
expected to relate to the intra- and inter-orbital interactions in
a systematic way, which can only be understood by using a

Figure 4. (a) M(t2g)/M(eg) is calculated as a function of the portion
of J by using DOS1. (b) The probability of the spin triplet states (the
sum of d↑↑

t , d↓↓
t , and d0

t ) calculated by using DOS1. The calculation
as a function of the portion of J (bottom axis) is performed at
U = 4.5 eV (circle). In the result as a function of U (top axis),
J (U ′) is set at 0.3U (0.4U ) (square).

multi-band model. Thus, the magnetizations of the two states
are studied as functions of the Coulomb interaction U and the
portion of the Hund’s coupling J in the atomic interaction.
An increase in J stabilizes the ferromagnetic solution and
also affects the ratio between the magnetizations of the two
states. In figure 4(a), showing the magnetization ratio as a
function of the portion of J , the increase in the portion of J
leads to the decrease in M(t2g)/M(eg). In doubly occupied
configurations, the spin triplet states (d↑↑

t , d↓↓
t , d0

t ) stabilize
with the increase in the portion of J (figure 4(b)), as shown
in the energy of the atomic configuration (figure 1). Since
the electron spins occupying the two orbitals align parallel
in the spin triplet states, the increase in the portion of J
results in a reduced difference between the magnetizations
of the two states, which corresponds to the decrease in
M(t2g)/M(eg) in this case (figure 4(a)). If the change of the
magnetization ratio in figure 4(a) is viewed as a function of
U , an increase in U is found to also bring about a decrease
in M(t2g)/M(eg). As for the discussion on the magnetic
behaviour by changing the portion of J , the probability
of the spin triplet states is first evaluated as a function of
U (figure 4(b)). Then, the probability of the spin triplet
states surely increases in keeping with U in this electron

4
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occupancy (figure 4(b)), since the energy difference among
doubly occupied configurations is proportional to U and the
energy of the spin triplet states is the lowest (figure 1).
However, its dependence on U is weak compared to the
probability change as a function of the portion of J . Further,
the dependence of the probability of the spin triplet states
on U weakens rather in the small portion of J , since
the energy difference among doubly occupied configurations
diminishes with the decrease in the portion of J . In this
case, the dominant factor for the change in M(t2g)/M(eg) as
a function of U can be considered to relate to the renormalized
kinetic energy relative to U . The difference between the
magnetizations of the two states originates from the kinetic
energy part via the difference in the projected orbital DOS. The
relative weight of the kinetic energy part in Evar is inversely
proportional to U , owing to the atomic part proportional
to U . Thus, if the difference between the renormalized
kinetic energies of the 3d(eg) and 3d(t2g) bands relative to U
(qeg ε̄eg,0/U and qt2g ε̄t2g,0/U ) reduces, the difference between
the magnetizations of the two states decreases. The increase in
U weakens the difference between qeg ε̄eg,0/U and qt2g ε̄t2g,0/U
and leads to a decrease in M(t2g)/M(eg) (figure 4(a)). These
provide reasonable understanding for the systematic change
of the magnetization ratio in figure 4(a). In this work,
we have studied the magnetizations derived from the eg

and t2g states as an important characteristic of the itinerant
ferromagnetism by these states. The relative value of the
magnetizations M(t2g)/M(eg) is found to be determined by
the relative intensities of the projected orbital DOS at EF,0, the
stability of the spin triplet states, and the renormalized kinetic
energies relative to U . The behaviour of the magnetizations by
these factors is clarified by the analyses using the Gutzwiller
variational method based on the two-band Hubbard model.

4. Summary

In this study, the ferromagnetism of the eg and t2g states has
been investigated by the Gutzwiller variational method based
on the two-band Hubbard model consisting of the eg and t2g

states. In the previous work on the generalized Gutzwiller
method [5], itinerant ferromagnetism in interacting multi-band
systems was described by Gutzwiller wavefunctions using
correlators for atomic eigenstates. Thus, its application to
the specific case of the two degenerate eg bands which have
identical projected orbital DOSs showed that the stability
of the atomic two-electron configurations consisting of the
two eg states influences the properties of the ferromagnetic
phase such as the magnetization as a function of the Coulomb
interaction U [5]. In this study, using the explicit form derived
for the two states (eg and t2g states), the magnetizations of
the eg and t2g states are examined. The result reproduces
the feature that the magnetization shows a different value
depending on the orbital. The difference (ratio) between the
magnetizations by these states is discussed as characteristics
of ferromagnetic phase derived from the two states that have
different projected orbital DOSs. The factors determining the

magnetizations of the eg and t2g states are summarized as the
relative intensities of the projected orbital DOS at EF,0, the
renormalized kinetic energies relative to U , and the stability
of the atomic configuration states. Thus, the stability of the
atomic two-electron configurations consisting of the eg and
t2g states also influences the ferromagnetic properties of this
system as represented by the ratio between the magnetizations
of the two states. The dependence of the magnetizations of
the two states on the above factors has been investigated. The
orbital-dependent magnetization is predominantly determined
by the strength of the renormalization for each band, reflecting
the spin-averaged kinetic energy of the uncorrelated case.
Thus, the magnetization of the 3d(t2g) band renormalized
more strongly has a larger value than that of the 3d(eg)

band. As expected, however, the detailed magnetization values
are affected by the relative intensities of the DOS projected
onto the two orbitals at EF,0, which explains the change of
the magnetization ratio M(t2g)/M(eg) accompanied by the
difference in the DOS projected onto the two orbitals near
EF,0. The analysis as a function of the atomic interactions
indicates that increases in the Coulomb interaction U and the
portion of the Hund’s coupling J in the atomic interaction
bring about balanced magnetizations between the two states.
The increase in U leads to a decrease in the renormalized
kinetic energies relative to U and the increase in the portion
of J stabilizes the spin triplet states. These features give
a reasonable explanation for the magnetic behaviour as a
function of the atomic interactions. Since the stabilization of
the itinerant ferromagnetism requires large DOS at the Fermi
energy, the Fermi surface is formed by the narrow 3d(eg) and
3d(t2g) bands in 3d transition metals. Thus, the variation in
the above factors can significantly affect the spin-dependent
electronic structure near the Fermi energy.
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